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Abstract

In financial markets as well as online marketplaces, each user can be a buyer or a seller

depending on the market conditions and their endowments. Here, I consider the problem of

designing a marketplace for such a market with a divisible good to maximize profit. I first

focus on Dominant-Strategy Implementable mechanisms and invoke the revelation principle. I

show that the designer’s profit is the expected virtual surplus. Then, I describe the optimal

allocation through an algorithm. The algorithm ranks agents according to their virtual values

and costs and allows trade between two agents if one’s value is greater than the other’s cost.

The volume of trade is determined by their endowments. After finding the optimal Dominant

Strategy Implementable mechanism, I argue that this mechanism is in fact optimal within the

class of Bayesian Implementable mechanisms as well. Finally, I consider an extension where

the marketplace itself can own some endowments and illustrate the type of inefficiency this can

lead.

1 Introduction

In this paper, I analyze optimal marketplace design problem in an economy with a single, divisible

good, and agents who can be both buyers or sellers, depending on the market conditions.

Stock exchanges are early examples of markets where each participant can buy more stocks

or sell some. However, online marketplaces that emerged more recently also have this feature.

These marketplaces that bring buyers and sellers together to make profit out of their trades are

everywhere. Uber, Airbnb and Amazon are some of the prominent examples that became parts

of daily life. They allow users to be on either demand or supply side of the market easily. This
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introduces an interesting problem for the marketplace: It needs to decide which agent it wants as

buyers and sellers before it can choose an optimal payment structure.

I study the problem of designing a marketplace to maximize its profit in an environment with

a single good. There are finitely many agents. Each agent has some endowments of the good, and

demand for 1 unit of the good. I assume that the good is divisible and endowments are between 0

and 1. Agents’ marginal valuations for the good is their private information. However, the designer

knows the distribution from which these valuations are drawn.

I first focus on Dominant Strategy Implementable Mechanisms. (Later I show that this is

without loss of profit.) By revelation principle for dominant strategy equilibrium, I focus on direct,

Dominant Strategy Incentive Compatible Mechanisms. I show that the profit of the marketplace

can be written as the expected sum of the virtual values and virtual costs of agents, depending on

whether they are buyers or sellers.

Given this, it becomes easy to characterize the optimal allocation through an algorithm. I rank

all agents according to their virtual values and virtual costs. I compare the highest virtual value,

V𝑖 to the lowest virtual cost, C𝑗 and shut down the mechanism if the value is less than the cost:

This means even the most profitable trade is not profitable for the marketplace. The mechanism

allows trade between these two agents -at the maximum possible volume- if V𝑖 > C𝑗 . Volume of

trade is determined by agents’ endowment levels: They trade at a quantity such that either the

agent with the highest virtual value has no more demand or the agent with the lowest virtual cost

has no more endowment. If one’s demand is satisfied or the supply is exhausted, she is removed

from the process with her current allocation. Next, the algorithm moves on to the highest virtual

value and the lowest virtual cost among the remaining agents and makes the same comparison as

above. It stops when there is no more virtual value greater than virtual cost among the remaining

agents. The transfers in the optimal marketplace are pinned down by an interplay of incentive

compatibility, individual rationality and profit-maximization.

Next, I show that the restriction to Dominant Strategy Implementable Mechanisms is without

loss. I do this in two steps. First, I assume that the good is indivisible and show that in this

case, the environment studied here is within the scope of the Bayesian and Dominant Strategy

equivalence result of Gershkov et al. (2013). Then, under the assumption that agents endowments

are rational numbers, I show that the equivalence result from Gershkov et al. (2013) extends to
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this setup. The restriction to rational endowments is for technical reasons and can be extended.

However, in any economic environment we are familiar with, endowments are rational numbers.

Thus, the marketplace does not lose profit by focusing on Dominant Strategy Implementation and

in fact gains the additional robustness provided by dominant strategies.

Finally, I consider an extension where the marketplace itself owns some endowment and can

become a seller. I argue that a simple modification of the algorithm described above solves this

problem. In this case, the marketplace ranks itself among agents with its virtual cost equal to its

actual cost. Of course, the inefficiency this implies is clear. The marketplace rather sells itself

before letting another agent with same or even slightly lower valuation sell.

A recent report by US Congress (Congress Majority Staff, 2020) has argued that Amazon’s

practice of producing products similar to ‘best selling’ products in many categories and selling

them under Amazon Basics brand is harmful for the economy. Furthermore, the report claims that

Amazon starts stocking ‘best selling’ products itself, which causes losses for the sellers who created

third-party stores on Amazon Marketplace and arguably made the product popular in the first

place. The extension with the marketplace as a seller might seem to justify the concern. However,

it is important to note that the inefficiency I highlight here is about how the ‘producer’s surplus’

is shared; Amazon’s low-priced products might still be improving the consumer welfare.

1.1 The Simple Economics of Optimal Marketplaces

In this section, I illustrate the revenue-maximizing allocation rule using an analysis similar to Bulow

and Roberts (1989). For simplicity, suppose each agent has the endowment of 0.5 unit so that each

of them can buy or sell up to 0.5 unit of the good. Suppose agent 𝑖 valuation 𝜃𝑖 is drawn from the

distribution 𝐹𝑖. We define virtual values and costs:

𝐵𝑖 (𝜃𝑖) = 𝜃𝑖 −
1 − 𝐹𝑖 (𝜃𝑖)

𝑓𝑖 (𝜃)
and 𝑆𝑖 (𝜃𝑖) = 𝜃𝑖 +

𝐹𝑖 (𝜃𝑖)
𝑓𝑖 (𝜃)

.

As I explained, the objective function can be written as the expected sum of each agent’s virtual

value or virtual cost, depending on whether the agent is ultimately assigned the role of a buyer or

a seller.

I will now use virtual values and costs to define the virtual (inverse) demand and supply func-
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tions. we rank the agents’ virtual values highest to lowest and denote them 𝑏1, 𝑏2, . . . , 𝑏𝑛. Similarly,

we rank them according to the virtual costs but from the lowest to the highest this time and denote

those numbers as 𝑠1, 𝑠2, . . . , 𝑠𝑛. We define the virtual demand 𝐷 and supply 𝑆 as

𝐷 (𝑞) = 𝑏𝑖 if
𝑖 − 1

2
< 𝑞 ≤ 𝑖

2
and 𝑆(𝑞) = 𝑠𝑖 if

𝑖 − 1

2
< 𝑞 ≤ 𝑖

2
.

This is in line with the way inverse demand and supply functions are taught as nonincreasing

and nondecreasing functions of quantity in introductory level courses. However, here they are step

functions with steps of length 0.5 since there are finitely many agents with 0.5 unit of demand and

supply each.

I can now express a simple version of the Theorem 2.1 using the virtual demand and supply

functions.

Corollary 1.1. The allocation rule associated with the mechanism that maximizes the profit under

incentive compatibility and individual rationality is as follows:

If 𝐵(0.5) ≤ 𝑆(0.5), no trade takes place.

If 𝐵(0.5) > 𝑆(0.5), then the total volume of trade is given by

𝑞∗ = max
𝑞∈[0,0.5𝑛]

{𝑞 |𝐵(𝑞) > 𝑆(𝑞)}.

Moreover, each agent with a virtual value greater than 𝐵(𝑞∗) buys 0.5 unit; each agent with a

virtual cost less than 𝑆(𝑞∗) sells 0.5 unit; the rest do not trade.

We will now study a concrete example to see how the allocation rule would work. Suppose

there are 4 agents. For the sake of simplicity, assume that each agent 𝑖’s valuation 𝜃𝑖 is drawn from

the uniform distribution on [0, 1]. In this case, virtual values and costs are given by 2𝜃𝑖 − 1 and

2𝜃𝑖 respectively. Suppose the principal receives the reports 0.2, 0.4, 0.6, 0.8. This would translate

to the virtual values −0.6,−0.2, 0.2, 0.6 and virtual costs 0.4, 0.8, 1.2, 1.6. If we plot the supply and

demand, we would get Figure 1 (left). The corollary above implies that in the profit-maximizing

mechanism, total quantity traded is 0.5 and agent whose value is 0.8 buys 0.5 unit, agent whose

value is 0.2 sells 0.5 and the other agents do not participate in any trade. For instance, if the agent

whose valuation is 0.8 valued the good at 0.6, then the corresponding plot is provided in Figure 1
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(right). Since the highest value of 𝐷 is lower than the lowest value of 𝑆, in the optimal mechanism,

there would not be any trade with these realizations.

𝑞
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Figure 1: Demand and Supply curves given realization {0.2, 0.4, 0.6, 0.8} (left) and {0.2, 0.4, 0.6, 0.6}
(right). In the right, 𝐷 is always below 𝑆, hence the corollary tells that there would not be any
trade in this instance. However, in the left, 𝐷 is above 𝑆 up to 𝑞 = 0.5. Hence, according to the
corollary, exactly 0.5 unit of good should be traded in the platform.

1.2 Literature Review

Myerson and Satterthwaite (1983) study the problem of designing a bilateral trade mechanism for

one buyer and one seller, with a single, indivisible good, either to maximize the total welfare or the

profit of the mechanism. However, there the roles as buyer and seller are exogenously determined.

By contrast, here the good is divisible, agents have arbitrary endowments and the mechanism has

to decide whether to make an agent a buyer or a seller, or not trade with them.

Lu and Robert (2001) analyze a closely related problem to mine. They also focus on a setup

with a divisible good, arbitrary endowments but unlike this paper, they assume the valuations are

drawn from the same distribution. Moreover, they directly attack the Bayesian Implementation

problem to maximize a mix of the welfare and the profit. While they are able to provide conditions

that the optimal allocations need to satisfy and show that an optimal allocation exists, the solution

is quite complicated and hard to implement. Moreover, the solution may not be dominant-strategy

implementable. By contrast, here I provide an explicit, closed-form solution through the algorithm

I describe, the mechanism is dominant-strategy incentive compatible, and I show that it doesn’t

lose any profit compared to optimal Bayesian mechanism.

Finally, Idem (2021) first extends the results from this paper to an environment with a contin-

uum of agents. Then, it considers a market choice game where the designer announces the details

of the marketplace and the agents choose between the marketplace and a decentralized market.
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It shows that in the unique equilibrium, both markets are active; the agents with ‘intermediate’

values join the decentralized market while the rest of the agents join the centralized market.

2 Monagora

I call this model monagora to emphasize the fact that in this part of the paper, I restrict all trade

to the centralized marketplace; hence there is a unique market or monagora.

2.1 Setup

• Agents: 𝑛 > 1 agents; 𝑁 = {1, . . . , 𝑛}.

• Types: Each agent 𝑖 has a value for a single-unit of a single good, 𝜃𝑖 ∈ Θ𝑖 which is private

information. (Let Θ =
∏𝑛

𝑖=1Θ𝑖 and 𝜃 ∈ Θ). I assume they have quasi-linear preferences and

that each agent has a unit-demand for the good.

• Endowments: Each agent 𝑖 has 𝑒𝑖 ∈ [0, 1] units of good which the designer and the agents

take as given. All endowments are common knowledge among the agents and a mechanism

designer.

• A mechanism designer wants to design a mechanism to maximize its profit.

By revelation principle, I focus on direct mechanisms that allocates 𝑞𝑖 : 𝜃 × [0, 1]𝑛 → R units

of good to each agent 𝑖 and asks her to pay 𝑡𝑖 : 𝜃 × [0, 1]𝑛 → R. Hence, the utility of the agent 𝑖

from the mechanism with the valuation 𝜃𝑖 and endowment 𝑒𝑖 is

𝑢𝑖 (𝜃, 𝑒) = 𝜃𝑖 min{1, 𝑞𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒) + 𝑒𝑖} − 𝑡𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒) − 𝜃𝑖𝑒𝑖 .
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max
(𝑞𝑖 ,𝑡𝑖)𝑖∈𝑁

∫
Θ

𝑛∑︁
𝑖=1

𝑡𝑖 (𝜃, 𝑒) 𝑓 (𝜃)𝑑𝜃

s. t.

(IC) 𝜃𝑖 min{1, 𝑞𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒) + 𝑒𝑖} − 𝑡𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒)

≥ 𝜃𝑖 min{1, 𝑞𝑖 (𝜃 ′𝑖 , 𝜃−𝑖 , 𝑒) + 𝑒𝑖} − 𝑡𝑖 (𝜃 ′𝑖 , 𝜃−𝑖 , 𝑒)

(IR) 𝜃𝑖 min{1, 𝑞𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒) + 𝑒𝑖} − 𝑡𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒) ≥ 𝑒𝑖𝜃𝑖

(Individual Feasibility) 𝑞𝑖 (𝜃, 𝑒) ≥ −𝑒𝑖

(Aggregate Feasability) 0 =
∑𝑛

𝑖=1 𝑞𝑖 (𝜃, 𝑒)

2.2 Simplifying The Designer’s Problem

We first develop a series of lemmata that help us state the maximization problem above as a concave

program.

Lemma 2.1 (Monotonicity). Suppose (𝑞𝑖 , 𝑡𝑖)𝑖∈𝑁 is a direct, IC mechanism. Then,

1. If 𝑞𝑖 (𝜃, 𝑒) + 𝑒𝑖 < 1 for some 𝜃 ∈ Θ, 𝑒 ∈ [0, 1]𝑛 𝑖 ∈ 𝑁, then 𝑞𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒) is increasing in 𝜃𝑖 at

(𝜃, 𝑒).

2. If 𝑞𝑖 (𝜃, 𝑒) + 𝑒𝑖 ≥ 1 for some 𝜃 ∈ Θ, 𝑒 ∈ [0, 1]𝑛 𝑖 ∈ 𝑁, then 𝑞𝑖 (𝜃 ′𝑖 , 𝜃−𝑖 , 𝑒) + 𝑒𝑖 ≥ 1 for each 𝜃 ′
𝑖
≥ 𝜃𝑖.

The proof is standard, except for taking care of the capacities so it can be found in the Appendix

A.

The next lemma presents the derivative of the utility of an agent in an IC mechanism.

Lemma 2.2 (Envelope Condition). If (𝑞𝑖 , 𝑡𝑖)𝑖∈𝑁 is a direct, IC mechanism, then for each 𝜃 ∈ Θ

𝜕𝑢(𝜃, 𝑒)
𝜕𝜃𝑖

=


𝑞𝑖 (𝜃, 𝑒), if 𝑞𝑖 (𝜃, 𝑒) + 𝑒𝑖 < 1,

1 − 𝑒𝑖 , otherwise.

Again, the proof is similar to standard arguments and can be found in Appendix B.

The next lemma gives the representation of the utility of each type as the integral of the

allocation rule, using the previous lemma.
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Lemma 2.3 (Payoff Equivalence). If (𝑞𝑖 , 𝑡𝑖)𝑖∈𝑁 is a direct, IC mechanism, then

𝑢𝑖 (𝜃, 𝑒) = 𝑢𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒) +
∫ min{𝜃𝑖 , 𝜃∗𝑖 }

𝜃𝑖

𝑞𝑖 (𝑥, 𝜃−𝑖 , 𝑒)𝑑𝑥 + (𝜃𝑖 −min{𝜃𝑖 , 𝜃∗𝑖 })(1 − 𝑒𝑖),

for each 𝜃 ∈ Θ where 𝜃∗
𝑖
is such that 𝑞𝑖 (𝜃𝑖 , 𝑒) + 𝑒𝑖 = 1 if such a solution exists, 𝜃∗

𝑖
= 𝜃𝑖 otherwise.

Proof. Since 𝑢𝑖 (𝜃, 𝑒) is convex in 𝜃𝑖 restricted to regions where 𝑞𝑖 (𝜃, 𝑒) + 𝑒𝑖 > 1 and 𝑞𝑖 (𝜃, 𝑒) + 𝑒𝑖 ≤ 1

separately, it is absolutely continuous in 𝜃𝑖. Then, it is the integral of its derivative. �

Notation: For any direct mechanism (𝑞𝑖 , 𝑡𝑖)𝑖∈𝑁 , let

𝑞∗𝑖 (𝜃, 𝑒) =


𝑞𝑖 (𝜃, 𝑒), if 𝑞𝑖 (𝜃, 𝑒) + 𝑒𝑖 < 1,

1 − 𝑒𝑖 , otherwise.

Note that for a direct, IC mechanism, 𝑞∗
𝑖
(𝜃𝑖 , 𝑒) is also weakly increasing.

Next, we pin down the transfer rule in an IC mechanism.

Lemma 2.4 (Revenue Equivalence). If (𝑞𝑖 , 𝑡𝑖)𝑖∈𝑁 is a direct, IC mechanism, then

𝑡𝑖 (𝜃, 𝑒) = −𝑢𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒) + 𝜃𝑖𝑞
∗
𝑖
(𝜃, 𝑒) −

∫ 𝜃𝑖

𝜃𝑖
𝑞∗
𝑖
(𝑥, 𝜃−𝑖 , 𝑒)𝑑𝑥,

for each 𝜃 ∈ Θ.

Proof. From the definition of 𝑢𝑖 (𝜃, 𝑒) and the previous lemma. �

Now we provide a sufficient condition for incentive compatibility of a mechanism.

Proposition 2.1. Let (𝑞𝑖 , 𝑡𝑖)𝑖∈𝑁 be a direct mechanism. The mechanism is incentive compatible if

and only if,

1. If 𝑞𝑖 (𝜃, 𝑒) + 𝑒𝑖 < 1, then 𝑞𝑖 (𝜃, 𝑒) is increasing in 𝜃𝑖 at (𝜃, 𝑒);

2. If 𝑞𝑖 (𝜃, 𝑒) + 𝑒𝑖 ≥ 1, then 𝑞𝑖 (𝜃 ′𝑖 , 𝜃−𝑖 , 𝑒) + 𝑒𝑖 ≥ 1 for each 𝜃 ′
𝑖
≥ 𝜃𝑖;

3. 𝑡𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒) = −𝑢𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒) + 𝜃𝑖𝑞
∗
𝑖
(𝜃, 𝑒) −

∫ 𝜃𝑖

𝜃𝑖
𝑞∗
𝑖
(𝑥, 𝜃−𝑖 , 𝑒)𝑑𝑥.
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Proof can be found in Appendix C.

The next proposition provides the characterization of the IR mechanisms by establishing the

types with the lowest utilities. The reason this is an issue in this model, unlike in the auction

theory is that in an auction, the lowest allocation an agent could receive is 0. Hence, the utility is

always increasing in agent’s type, as can be seen from the envelope condition. However, here, an

agent with a relatively low type can be a seller, which means he would get a negative allocation.

Therefore, the utility of the lowest type is not the lowest utility in this case, which can again by

seen from the envelope condition.

Proposition 2.2. Let (𝑞𝑖 , 𝑡𝑖)𝑖∈𝑁 be a direct IC mechanism. Then, it is IR if and only if for each

𝑒 ∈ [0, 1]𝑛, 𝜃−𝑖 ∈ Θ𝑖, for each agent 𝑖 ∈ 𝑁,

𝜃∗𝑖 𝑞
∗
𝑖 (𝜃∗𝑖 , 𝜃−𝑖 , 𝑒) ≥ 𝑡𝑖 (𝜃∗𝑖 , 𝜃−𝑖 , 𝑒),

where 𝜃∗
𝑖
is defined as

1. 𝜃∗
𝑖
= 0 if 𝑞∗

𝑖
(𝜃𝑖 , 𝜃−𝑖 , 𝑒) ≥ 0,

2. 𝜃∗
𝑖
= 𝜃𝑖 if 𝑞

∗
𝑖
(𝜃𝑖 , 𝜃−𝑖 , 𝑒) < 0,

3. the solution to 𝑞∗
𝑖
(𝜃∗

𝑖
, 𝜃−𝑖 , 𝑒) = 0 if such a type exists,

4. 𝜃𝑖 such that for each 𝜃 ′
𝑖
< 𝜃𝑖, 𝑞

∗
𝑖
(𝜃 ′

𝑖
, 𝜃−𝑖 , 𝑒) < 0 and for each 𝜃 ′

𝑖
> 𝜃𝑖, 𝑞

∗
𝑖
(𝜃 ′

𝑖
, 𝜃−𝑖 , 𝑒) > 0.

Proof. Case 1: Suppose 𝑞∗
𝑖
(𝜃𝑖 , 𝜃−𝑖 , 𝑒) ≥ 0. Then, by Lemma 2.3, incentive compatibility of a

mechanism implies that the associated ex-post utilities 𝑢𝑖 (𝜃, 𝑒) are increasing in 𝜃𝑖. Hence, if

𝑢𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒) ≥ 0, we have 𝑢𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒) ≥ 0 for each 𝜃𝑖 ∈ Θ𝑖. Of course, 𝑢𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒) ≥ 0 means

𝜃𝑖𝑞
∗
𝑖
(𝜃𝑖 , 𝜃−𝑖 , 𝑒) ≥ 𝑡𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒)

Case 2: Suppose 𝑞∗
𝑖
(𝜃𝑖 , 𝜃−𝑖 , 𝑒) < 0. Then, by Lemma 2.3, 𝑢𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒) are decreasing and hence,

𝑢𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒) is the lowest payoff. Hence, if it is nonnegative, all other types’ payoffs are nonnegative

as above.

Cases 3 and 4: Suppose 𝜃∗
𝑖
is defined as in the Case 3 or Case 4. Then, by Lemma 2.3,

𝑢𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒) is decreasing up to 𝜃∗
𝑖
and increasing after that point. Hence, type 𝜃∗

𝑖
has the lowest

payoff. So, if 𝑢𝑖 (𝜃∗𝑖 , 𝜃−𝑖 , 𝑒) ≥ 0, each type’s IR condition must also hold.
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Lemma 2.5. If an IC and IR mechanism maximizes the expected revenue of the designer, then for

each 𝑒 ∈ [0, 1]𝑛, for each agent 𝑖 ∈ 𝑁,

𝑡𝑖 (𝜃∗𝑖 , 𝜃−𝑖 , 𝑒) = 𝜃∗𝑖 𝑞𝑖 (𝜃∗𝑖 , 𝜃−𝑖 , 𝑒)

where 𝜃∗
𝑖
is defined as

1. 𝜃∗
𝑖
= 0 if 𝑞∗

𝑖
(𝜃𝑖 , 𝜃−𝑖 , 𝑒) ≥ 0,

2. 𝜃∗
𝑖
= 𝜃𝑖 if 𝑞

∗
𝑖
(𝜃𝑖 , 𝜃−𝑖 , 𝑒) < 0,

3. the solution to 𝑞∗
𝑖
(𝜃∗

𝑖
, 𝜃−𝑖 , 𝑒) = 0 if such a type exists.

Proof. The previous proposition shows that IC and IR mechanisms must have 𝜃∗
𝑖
𝑞𝑖 (𝜃∗𝑖 , 𝜃−𝑖 , 𝑒) greater

than 𝑡𝑖 (𝜃∗𝑖 , 𝜃−𝑖 , 𝑒). However, if 𝜃∗𝑖 𝑞𝑖 (𝜃∗𝑖 , 𝜃−𝑖 , 𝑒) > 𝑡𝑖 (𝜃∗𝑖 , 𝜃−𝑖 , 𝑒), then the seller can increase the expected

revenue by increasing 𝑡𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒) and keeping the allocation rule the same. This would increase all

types’ payments and the revenue strictly, contradicting revenue maximization.

�

Using the condition about 𝜃∗
𝑖
from Lemma 2.5 and the previous lemmata, we have

𝜃∗
𝑖
𝑞∗
𝑖
(𝜃∗

𝑖
, 𝜃−𝑖 , 𝑒) = 𝑡𝑖 (𝜃∗𝑖 , 𝜃−𝑖 , 𝑒)

= −𝑢𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒) + 𝜃∗
𝑖
𝑞∗
𝑖
(𝜃∗

𝑖
, 𝜃−𝑖 , 𝑒) −

𝜃∗
𝑖∫

𝜃𝑖

𝑞∗
𝑖
(𝑥, 𝜃−𝑖 , 𝑒)𝑑𝑥

⇐⇒ 𝑢𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒) = −
𝜃∗
𝑖∫

𝜃𝑖

𝑞∗
𝑖
(𝑥, 𝜃−𝑖 , 𝑒)𝑑𝑥

⇐⇒ 𝑡𝑖 (𝜃𝑖 , 𝑒) =
𝜃∗
𝑖∫

𝜃𝑖

𝑞∗
𝑖
(𝑥, 𝜃−𝑖 , 𝑒)𝑑𝑥 + 𝜃𝑖𝑞

∗
𝑖
(𝜃𝑖 , 𝜃−𝑖 , 𝑒) −

𝜃𝑖∫
𝜃𝑖

𝑞∗
𝑖
(𝑥, 𝜃−𝑖 , , 𝑒)𝑑𝑥

Now we are ready to show that the allocation rule in a revenue-maximizing mechanism is not

‘wasteful’.

Proposition 2.3. Let (𝑞𝑖 , 𝑡𝑖)𝑖∈𝑁 be a direct mechanism that maximizes the revenue of the designer.

Then, for each 𝜃 ∈ 𝜃, 𝑒 ∈ [0, 1]𝑛 for each 𝑖 ∈ 𝑁, 𝑞𝑖 (𝜃, 𝑒) ≤ 1 − 𝑒𝑖.
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Proof. First, suppose that in the optimal mechanism, there exists 𝜃, 𝑒 and 𝑗 such that 𝑞 𝑗 (𝜃, 𝑒) >

1− 𝑒 𝑗 . Notice that decreasing the allocation to 1− 𝑒 𝑗 has no effect on the agent’s payoff. Hence, it

doesn’t effect any IC or IR constraints.

Next, let us examine the transfer rule in a direct, IC mechanism:

𝑡𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒) =
∫ 𝜃∗

𝑖

𝜃𝑖

𝑞∗𝑖 (𝑥, 𝜃−𝑖 , 𝑒)𝑑𝑥 + 𝜃𝑖𝑞
∗
𝑖 (𝜃, 𝑒) −

∫ 𝜃𝑖

𝜃𝑖

𝑞∗𝑖 (𝑥, 𝑒)𝑑𝑥.

If we have 𝑞 𝑗 (𝜃, 𝑒) > 1 − 𝑒 𝑗 for a positive measure of types, then we must have 𝑞𝑖 (𝜃, 𝑒) < 0 for

a positive measure of types by the aggregate feasibility constraint. Hence, if we reduced 𝑞 𝑗 (𝜃, 𝑒) =

1−𝑒 𝑗 for a positive measure of types, this wouldn’t affect any constraints but instead increase profit

as it allows us to increase 𝑞𝑖 (𝜃, 𝑒) < 0 for a positive measure of types, contradicting the optimality

of the mechanism.

�

Now we can restate the problem as follows.

max
(𝑞𝑖 ,𝑡𝑖)𝑖∈𝑁

𝑛∑
𝑖=1

∫
Θ

[ ∫
{𝜃𝑖 |𝑞𝑖 (𝜃𝑖 , 𝜃−𝑖 ,𝑒) ≤0}

𝑞𝑖 (𝑥, 𝜃−𝑖 , 𝑒)𝑑𝑥

+ ©«𝜃𝑖𝑞𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒) −
𝜃𝑖∫
𝜃𝑖

𝑞𝑖 (𝑥, 𝜃−𝑖 , 𝑒)𝑑𝑥
ª®¬
]
𝑓 (𝜃)𝑑𝜃

s. t.

𝑞𝑖 (𝜃, 𝑒) is increasing in 𝜃𝑖

𝑞𝑖 (𝜃, 𝑒) ≥ −𝑒𝑖

0 =
∑𝑛

𝑖=1 𝑞𝑖 (𝜃, 𝑒)

After some transformations1, the problem above can be rewritten as follows:

1The details can be followed in Appendix D.
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max
(𝑞𝑖 ,𝑡𝑖)𝑖∈𝑁

𝑛∑︁
𝑖=1

[∫
Θ

𝑞𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒)
[
1{𝑞𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒) ≤ 0}

𝑓𝑖 (𝜃𝑖)
+
(
𝜃𝑖 −

(1 − 𝐹𝑖 (𝜃𝑖))
𝑓𝑖 (𝜃𝑖)

)]
𝑓 (𝜃)𝑑𝜃

]
s. t.

𝑞𝑖 (𝜃, 𝑒) is increasing in 𝜃𝑖

𝑞𝑖 (𝜃, 𝑒) ≥ −𝑒𝑖

0 =
∑𝑛

𝑖=1 𝑞𝑖 (𝜃, 𝑒𝑖)

Let 𝐵𝑖 (𝜃𝑖) =
(
𝜃𝑖 −

(1 − 𝐹𝑖 (𝜃𝑖))
𝑓𝑖 (𝜃𝑖)

)
, which is the virtual value and 𝑆𝑖 (𝜃𝑖) =

(
𝜃𝑖 +

(𝐹𝑖 (𝜃𝑖)
𝑓𝑖 (𝜃𝑖)

)
, which is

the virtual cost. Virtual value and virtual cost are essentially the marginal revenue and marginal

cost of having more buyers and sellers in the marketplace, respectively. We are going to focus on

distributions that have increasing virtual values and costs.

Definition 2.1. The distribution of an agent 𝑖’s type, 𝐹𝑖 is regular if both 𝐵𝑖 and 𝑆𝑖 are increasing.

2.3 An Algorithm to Calculate the Optimal Allocation

I now describe an algorithm that would determine the allocation rule that maximizes the expected

revenue.

Given some type profile, 𝜃, suppose without loss of generality that 𝐵1(𝜃1) ≥ · · · ≥ 𝐵𝑖 (𝜃𝑖) ≥ · · · ≥

𝐵𝑛 (𝜃𝑛) and that 𝑆𝑠 (1) (𝜃𝑠 (1) ) ≥ · · · ≥ 𝑆𝑠 (𝑖) (𝜃𝑠 (𝑖) ) ≥ · · · ≥ 𝑆𝑠 (𝑛) (𝜃𝑠 (𝑛) ) where 𝑠(𝑖) denotes the agent

with 𝑖-th highest virtual cost.

Let us define auxiliary allocation functions among the agents: 𝑞𝑘
𝑖
(𝜃) denotes the allocation the

agent 𝑖 receives from agent 𝑘. We start the algorithm at 𝑞𝑘
𝑖
(𝜃) = 0 for each 𝑖, 𝑘 ∈ 𝑁.

We will define the allocation as follows.

Set 𝑖 = 1 and 𝑗 = 𝑠(𝑛).

1. If 𝐵𝑖 (𝜃𝑖) ≯ 𝑆 𝑗 (𝜃 𝑗), go to (3).

2. If 𝐵𝑖 (𝜃𝑖) > 𝑆 𝑗 (𝜃 𝑗),

𝑞
𝑗

𝑖
(𝜃) = min{1 − 𝑒𝑖 −

∑︁
{𝑘:𝑠−1 (𝑘) ≤𝑠−1 ( 𝑗) }

𝑞𝑘𝑖 (𝜃), 𝑒 𝑗 +
𝑖−1∑︁
𝑘=1

𝑞𝑘𝑗 }.
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i. If

1 − 𝑒𝑖 −
∑︁

{𝑘:𝑠−1 (𝑘) ≤𝑠−1 ( 𝑗) }
𝑞𝑘𝑖 (𝜃) < 𝑒 𝑗 +

𝑖−1∑︁
𝑘=1

𝑞𝑘𝑗

𝑖 = 𝑖 + 1 and go to (1).

ii. If

1 − 𝑒𝑖 −
∑︁

{𝑘:𝑠−1 (𝑘) ≤𝑠−1 ( 𝑗) }
𝑞𝑘𝑖 (𝜃) > 𝑒 𝑗 +

𝑖−1∑︁
𝑘=1

𝑞𝑘𝑗

𝑗 = 𝑠(𝑠−1( 𝑗) − 1) and go to (1).

iii. If

1 − 𝑒𝑖 −
∑︁

{𝑘:𝑠−1 (𝑘) ≤𝑠−1 ( 𝑗) }
𝑞𝑘𝑖 (𝜃) = 𝑒 𝑗 +

𝑖−1∑︁
𝑘=1

𝑞𝑘𝑗

𝑖 = 𝑖 + 1 and 𝑗 = 𝑠(𝑠−1( 𝑗) − 1) and go to (1).

3. For each 𝑘 ∈ 𝑁, let 𝑞𝑘 (𝜃) =
∑𝑛

𝑎=1 𝑞
𝑎
𝑘
(𝜃) and exit.

We are going to see that this algorithm does not admit any cycles.

Proposition 2.4. The allocations algorithm described above does not admit any cycles.

Proof. Given some type profile, 𝜃, suppose without loss of generality that 𝐵1(𝜃1) ≥ · · · ≥ 𝐵𝑖 (𝜃𝑖) ≥

· · · ≥ 𝐵𝑛 (𝜃𝑛) and that 𝑆𝑠 (1) (𝜃𝑠 (1) ) ≥ · · · ≥ 𝑆𝑠 (𝑖) (𝜃𝑠 (𝑖) ) ≥ · · · ≥ 𝑆𝑠 (𝑛) (𝜃𝑠 (𝑛) ).

Suppose there was a cycle: B𝑖 (𝜃𝑖) ≥ S 𝑗 (𝜃 𝑗);B 𝑗 (𝜃 𝑗) ≥ S𝑘 (𝜃𝑘), . . . ,B𝑦 (𝜃𝑦) ≥ S𝑧 (𝜃𝑧) but B𝑧 (𝜃𝑧) >

S𝑖 (𝜃𝑖).

Notice that for any agent 𝛼, we have

S𝛼 (𝜃𝛼) = B𝛼 (𝜃𝛼) +
1

𝑓𝛼 (𝜃𝛼)
≥ B𝛼 (𝜃𝛼).

Then, above cycle implies that

B𝑖 (𝜃𝑖) ≥ S 𝑗 (𝜃 𝑗) ≥ B 𝑗 (𝜃 𝑗) ≥ S𝑘 (𝜃𝑘), . . . ,B𝑦 (𝜃𝑦) ≥ S𝑧 (𝜃𝑧) ≥ B𝑧 (𝜃𝑧) > S𝑖 (𝜃𝑖),

a contradiction as it comes to mean B𝑖 (𝜃𝑖) > S𝑖 (𝜃𝑖).

�
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Now, we can prove the optimality of this algorithm in maximizing the platform’s profit.

Theorem 2.1. Suppose each agent’s type is drawn from a regular distribution. Then, the revenue-

maximizing mechanism has the allocation rule described by the above algorithm and the following

transfer rule:

𝑡∗𝑖 (𝜃, 𝑒) =
∫
{𝜃𝑖 |𝑞𝑖 (𝜃𝑖 , 𝜃−𝑖 ,𝑒) ≤0}

𝑞𝑖 (𝑥, 𝜃−𝑖 , 𝑒)𝑑𝑥 + 𝜃𝑖𝑞𝑖 (𝜃, 𝑒) −
∫ 𝜃𝑖

𝜃𝑖

𝑞𝑖 (𝑥, 𝜃−𝑖 , 𝑒)𝑑𝑥.

Proof. Consider the point-wise maximization problem given (𝜃, 𝑒) and ignore the constraint that

𝑞𝑖 is increasing in 𝜃𝑖 for a moment.

Claim 2.1. Let 𝑖 and 𝑗 be such that 𝐵𝑖 (𝜃𝑖) > 𝑆 𝑗 (𝜃 𝑗). If 𝑞 𝑗 (𝜃 𝑗) > −𝑒 𝑗 , then 𝑞𝑖 (𝜃, 𝑒) = 1 − 𝑒𝑖.

Proof. Let 𝑖 and 𝑗 be such that 𝐵𝑖 (𝜃𝑖) > 𝑆 𝑗 (𝜃 𝑗). If 𝑞𝑖 (𝜃, 𝑒) < 1 − 𝑒𝑖 and 𝑞 𝑗 (𝜃, 𝑒) > −𝑒 𝑗 , then

increasing 𝑞𝑖 (𝜃, 𝑒) and decreasing 𝑞 𝑗 (𝜃, 𝑒) by the same amount, to the extent that it is possible

under the constraints, strictly increases the revenue. �

Since the profit is the expected difference of virtual values and costs of trades that realize, the

most profitable trade (per quantity) is the one between the agent with the highest virtual value

and the one with the lowest virtual cost. If their trade has a negative virtual surplus, that means

in that type profile, there is no profitable trade, so it is better to shut down. If their trade has

a positive virtual surplus, then it is profitable for the marketplace to intermediate their trade, at

the maximum capacity. Once their trade is accomplished, the new most profitable trade is again

between the agent with the highest virtual value and the agent with the lowest virtual cost, among

the remaining agents. Thus, it is optimal to proceed in this manner, until there is no more trade

with positive virtual surplus.

�

3 Example with 𝑛 = 2

Suppose there are two agents, 𝑁 = {1, 2} with endowments (𝑒1, 𝑒2) = (0.6, 0.5). Each 𝜃𝑖 is dis-

tributed uniformly over [0, 1] with c.d.f. 𝐹𝑖 (𝜃𝑖) = 𝜃𝑖. Then, the virtual values and costs are given
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by

B𝑖 (𝜃𝑖) = 2𝜃𝑖 − 1 and S𝑖 (𝜃𝑖) = 2𝜃𝑖 .

The Figure 2 depicts the space of (𝜃1, 𝜃2) where the shaded areas represent B1(𝜃1) > S2(𝜃2) and

B2(𝜃2) > S1(𝜃1) respectively. As you can see, a large part of the type spaces sees no trade. This is

similar to a monopolist who finds it optimal to exclude some buyers from trade, to get more from

the other ones. However, in this case, the agents can actually create a surplus by themselves as

long as they have different valuations for the good (which happens with probability 1), since they

each have some endowment and demand for the good. I study the problem of the marketplace that

takes into account the possibility that agents can trade outside the marketplace in Idem (2021).

𝜃1

𝜃2

0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Figure 2: 𝑥-axis represents Θ1 and 𝑦-axis represents Θ2. Green and red areas show the type profiles
at which agent 1 and 2 is the buyer, respectively.

We can also compare this to the welfare maximization of Myerson and Satterthwaite (1983).

There, the trade would be one sided only and the mechanism would allow the trade as long as the

buyer’s value is greater than the seller’s value plus 0.25. Suppose one of the agents have 1 unit of

endowment and the other has none:

The trapezoid area between the large and the small triangle is, in a sense, the cost of profit

rather than welfare maximization.

Straightforward calculations show that

B𝑖 (𝜃𝑖) > S 𝑗 (𝜃 𝑗) ⇐⇒ 𝜃𝑖 > 𝜃 𝑗 + 0.5.
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𝜃1

𝜃2

0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Figure 3: 𝑥-axis represents Θ1 and 𝑦-axis represents Θ2. The small triangle is the area where our
mechanism would allow trade while the larger one is the area where Myerson and Satterthwaite
(1983) would.

By Theorem 2.1, we have

𝑞(𝜃, 𝑒) =



(0.4,−0.4), if 𝜃1 > 𝜃2 + 0.5,

(−0.5, 0.5), if 𝜃2 − 0.5 > 𝜃1,

(0, 0), otherwise.

Now, we can calculate the transfers.

𝑡1(𝜃, 𝑒) =



0.4(𝜃2 + 0.5), if 𝜃1 > 𝜃2 + 0.5,

−0.5(𝜃2 − 0.5), if 𝜃2 − 0.5 > 𝜃1,

0, otherwise.

𝑡2(𝜃, 𝑒) =



−0.4(𝜃1 − 0.5), if 𝜃1 > 𝜃2 + 0.5,

0.5(𝜃1 + 0.5), if 𝜃2 − 0.5 > 𝜃1,

0, otherwise.

4 Optimality Among Bayesian Mechanisms

Now, I will show that the restriction to the dominant-strategy incentive-compatible mechanisms

is without loss. First, assuming the good is indivisible, I show that this is the case through a
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direct application of Gershkov et al. (2013). Then, I will assume that the endowments are rational

numbers and show that the equivalence is true when the good is divisible as well. The restriction

of the endowments to rational numbers is a reflection of realistic constraints: Every trade is limited

by a finite decimal points for both quantities and the payments in virtually every venue. Thus,

there is no reason to think an agent might come to the marketplace with the endowment 1
𝜋
.

4.1 Indivisible Goods

Suppose the good is indivisible and can only be traded at increments of 𝑑 < 1. Then, of course,

each endowment and allocation must be an integer multiple of 𝑑. Clearly, the set of admissible

allocations that allocate only integer multiples of 𝑑 is finite. We can define each of these admissible

allocations as separate outcomes: An outcome is a vector of allocations, (𝑜1, . . . , 𝑜𝑛) such that 𝑜𝑖 is

an integer multiple of 𝑘 and 1 − 𝑒𝑖 ≥ 𝑜𝑖 ≥ −𝑒𝑖. Let O be the set of all such outcomes. (Notice that

not all elements of O are feasible, as we didn’t consider aggregate feasibility when constructing it.)

We can map these outcomes of Gershkov et al. (2013). There, they assume that there are

finitely many outcomes, and agents’ utilities under the outcome 𝑘 are 𝑢𝑘
𝑖
(𝑥𝑖 , 𝑡𝑖) = 𝑎𝑘

𝑖
𝑥𝑖 +𝑐𝑘𝑖 + 𝑡𝑖 where

𝑎𝑘
𝑖
, 𝑐𝑘

𝑖
∈ R are constants, 𝑥𝑖 is an agent’s private type and 𝑡𝑖 is a monetary transfer. Then, for each

outcome 𝑜 ∈ O, we can define a corresponding outcome 𝑘 in their environment such that for each

𝑖, 𝑎𝑘
𝑖
= 𝑜𝑖 and 𝑐𝑘

𝑖
= 0. Thus, their result about the equivalence of Bayesian and Dominant-Strategy

Implementations apply to our environment, when the good is indivisible.

4.2 Divisible Goods

Now, suppose the endowments are rational numbers. We will first introduce an artificial divisibility

constraint. Under this constraint, the result from Gershkov et al. (2013) will apply directly, with

the same construction as above. Then, we will take the fractions that can be traded to the limit 0

and obtain the result for the divisible good.

Let 𝑑𝑖 = 2−𝑖 for each 𝑖 = 1, 2, . . .. For each 𝑖, we define the outcome sets, O𝑖 for each 𝑑𝑖,

similar to above. These sets will again be finite for each 𝑖 < ∞. Thus, as the construction above

shows, Gershkov et al. (2013) implies that the Bayesian and Dominant-Strategy Implementations

are payoff and profit equivalent. Let 𝑜𝑖 be the allocation that is implemented when the trades can

only be integer multiples of 𝑑𝑖. Moreover, let 𝑂𝑖 be the Bayesian-optimal allocation under the same
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scenario. Then, the equivalence implies 𝑂𝑖
𝑗
= E− 𝑗 [𝑜𝑖], for each agent 𝑗 and for each 𝑖 = 1, 2 . . ..

As we consider the limit 𝑖 → ∞, both sequences (𝑜𝑖)∞𝑖=1 and (𝑂𝑖)∞𝑖=1 converge. To see this, notice

that since the endowments are feasible, the optimal allocations when the good is divisible will be

rational numbers as well. Thus, they will have finite binary representations. Thus, after some finite

integers 𝑘𝑜, 𝑘𝑂 ∈ N, the solution of the indivisible problem will become feasible for each case. Since

that is the solution to the unconstrained problem, when it is feasible, it will be the solution to

the constrained problem as well. Therefore, both sequences converge. Let 𝑜 and 𝑂 be their limits.

Then, the continuity of the expectation implies that 𝑂 𝑗 = E− 𝑗 [𝑜]. Of course, this means that the

solution to the dominant-strategy implementation problem with indivisible good is also a solution

to the Bayesian implementation problem with indivisible good.

5 Marketplace as a Seller

A very natural extension of the model above is to allow the marketplace to be a seller as well. For

instance, Amazon facilitates trade between buyers and sellers. However, it also sells some products

itself, some of which are even produced by Amazon. Thus, here I allow the marketplace to be

able to own some units at a per-unit cost, 𝑐. Let agent 0 be the marketplace with 𝑞0(𝜃) denoting

the units the marketplace itself sells at the type profile 𝜃. Finally, let 𝑒0 be the supply of the

marketplace. Unlike other agents’ endowments, I allow the marketplace to own more than 1 unit.

Then, the problem is as follows:

max
(𝑞𝑖 ,𝑡𝑖)𝑖∈𝑁

𝑛∑︁
𝑖=1

[∫
Θ

𝑞𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒)
[
1{𝑞𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒) ≤ 0}

𝑓𝑖 (𝜃𝑖)
+
(
𝜃𝑖 −

(1 − 𝐹𝑖 (𝜃𝑖))
𝑓𝑖 (𝜃𝑖)

)]
𝑓 (𝜃)𝑑𝜃

]
− 𝑐

∫
Θ

𝑐𝑞0(𝜃) 𝑓 (𝜃)𝑑𝜃

s. t.

𝑞𝑖 (𝜃, 𝑒) is increasing in 𝜃𝑖

𝑞𝑖 (𝜃, 𝑒) ≥ −𝑒𝑖

0 =
∑𝑛

𝑖=1 𝑞𝑖 (𝜃, 𝑒𝑖)

A simple modification of the algorithm will be enough to capture the new element. Let S0 = 𝑐.

Then, the marketplace will enter itself to the ranking of the virtual costs with this constant virtual
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cost and everything else will work the same as before. Proof that this is the optimal allocation is

omitted as it is essentially the same as before, except there is now one more potential seller. (Of

course, if we interpret 𝑐 as valuation rather than the cost of producing or obtaining the good, the

marketplace can also end up as a buyer. Then, we would also define the virtual value as B0 = 𝑐.)

Notice that if another agent’s valuation is equal to 𝑐 as well, then this agent’s virtual cost is

higher than the virtual cost of the marketplace, since the virtual cost of the marketplace is equal

to the actual cost but the agent’s virtual cost include an additional positive term,
𝐹 (𝑐)
𝑓 (𝑐) . This

introduces some inefficiency: The marketplace prefers to sell its own endowment before an agent

whose valuation is equal to 𝑐, since buying from an agent comes with the information rent. As I

argued in the introduction, this is an area of active debate in the context of Amazon and other big

tech companies. US Congress may take actions to regulate Amazon’s use of third-party sales data

to curate their own products (e.g. Amazon Basics) as well as their own first-party retail sales (e.g.

books, electronics produced by other companies, etc.) (Congress Majority Staff, 2020).
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A Proof of Lemma 1

Proof. Let 𝜃 ∈ Θ and 𝜃 ′
𝑖
∈ Θ𝑖. Then, by incentive compatibility

𝜃𝑖 min{1, 𝑞𝑖 (𝜃, 𝑒) + 𝑒𝑖} − 𝑡𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒) ≥ 𝜃𝑖 min{1, 𝑞𝑖 (𝜃 ′𝑖 , 𝜃−𝑖 , 𝑒) + 𝑒𝑖} − 𝑡𝑖 (𝜃 ′𝑖 , 𝜃−𝑖 , 𝑒)

and

𝜃 ′𝑖 min{1, 𝑞𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒) + 𝑒𝑖} − 𝑡𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒) ≤ 𝜃 ′𝑖 min{1, 𝑞𝑖 (𝜃 ′𝑖 , 𝜃−𝑖 , 𝑒) + 𝑒𝑖} − 𝑡𝑖 (𝜃 ′𝑖 , 𝜃−𝑖 , 𝑒).

Subtracting the second inequality from the first one leads to:

(𝜃𝑖 − 𝜃 ′𝑖)min{1, 𝑞𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒) + 𝑒𝑖} ≥ (𝜃𝑖 − 𝜃 ′𝑖)min{1, 𝑞𝑖 (𝜃 ′𝑖 , 𝜃−𝑖 , 𝑒) + 𝑒𝑖}

Suppose 𝑞(𝜃, 𝑒) + 𝑒𝑖 < 1 and 𝜃𝑖 > 𝜃 ′
𝑖
. Then, we have
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min{1, 𝑞𝑖 (𝜃, 𝑒) + 𝑒𝑖} ≥ min{1, 𝑞𝑖 (𝜃 ′𝑖 , 𝜃−𝑖 , 𝑒) + 𝑒𝑖} ⇐⇒

1 > 𝑞𝑖 (𝜃, 𝑒) + 𝑒𝑖 ≥ min{1, 𝑞𝑖 (𝜃 ′𝑖 , 𝜃−𝑖 , 𝑒) + 𝑒𝑖} ⇐⇒

𝑞𝑖 (𝜃, 𝑒) ≥ 𝑞𝑖 (𝜃 ′𝑖 , 𝜃−𝑖 , 𝑒)

Now suppose 𝑞(𝜃, 𝑒) + 𝑒𝑖 ≥ 1 and 𝜃 ′
𝑖
≥ 𝜃𝑖. Then,

min{1, 𝑞𝑖 (𝜃 ′𝑖 , 𝜃−𝑖 , 𝑒) + 𝑒𝑖} ≥ min{1, 𝑞𝑖 (𝜃, 𝑒) + 𝑒𝑖} ⇐⇒

min{1, 𝑞𝑖 (𝜃 ′𝑖 , 𝜃−𝑖 , 𝑒) + 𝑒𝑖} ≥ 1 ⇐⇒

𝑞𝑖 (𝜃 ′𝑖 , 𝜃−𝑖 , 𝑒) + 𝑒𝑖 ≥ 1.

�

B Proof of Lemma 2

Proof. First, suppose 𝑞𝑖 (𝜃, 𝑒) + 𝑒𝑖 < 1. Then, IC implies that for a type 𝜃𝑖 agent:

𝑢𝑖 (𝜃, 𝑒) = max
𝜃′
𝑖
∈Θ𝑖

min{1, 𝑞𝑖 (𝜃 ′𝑖 , 𝜃−𝑖 , 𝑒) + 𝑒𝑖}𝜃𝑖 − 𝑡𝑖 (𝜃 ′𝑖 , 𝜃−𝑖 , 𝑒) − 𝑒𝑖𝜃𝑖

= max
𝜃′
𝑖
∈Θ𝑖

𝑞𝑖 (𝜃 ′𝑖 , 𝜃−𝑖 , 𝑒)𝜃𝑖 − 𝑡𝑖 (𝜃 ′𝑖 , 𝜃−𝑖 , 𝑒).

Notice that the RHS is the maximum of affine functions of 𝜃𝑖, so 𝑢𝑖 (𝜃𝑖 , 𝑒) is convex in 𝜃𝑖 in this

region. Hence, 𝑢𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒) is differentiable almost everywhere in 𝜃𝑖 on this region. For any 𝜃𝑖 at

which it is differentiable, for 𝛿 > 0, IC implies that

lim
𝛿→0

𝑢𝑖 (𝜃𝑖 + 𝛿, 𝜃−𝑖 , 𝑒) − 𝑢𝑖 (𝜃, 𝑒)
𝛿

≥ lim
𝛿→0

(𝑞𝑖 (𝜃, 𝑒) (𝜃𝑖 + 𝛿) − 𝑡𝑖 (𝜃, 𝑒)) − (𝑞𝑖 (𝜃, 𝑒)𝜃𝑖 − 𝑡𝑖 (𝜃, 𝑒))
𝛿

= 𝑞𝑖 (𝜃, 𝑒).

lim
𝛿→0

𝑢𝑖 (𝜃, 𝑒) − 𝑢𝑖 (𝜃𝑖 − 𝛿, 𝜃−𝑖 , 𝑒)
𝛿

≤ lim
𝛿→0

(𝑞𝑖 (𝜃, 𝑒)𝜃𝑖 − 𝑡𝑖 (𝜃, 𝑒)) − (𝑞𝑖 (𝜃, 𝑒) (𝜃𝑖 − 𝛿) − 𝑡𝑖 (𝜃, 𝑒))
𝛿

= 𝑞𝑖 (𝜃, 𝑒).

Then, two inequalities together imply that

𝜕𝑢𝑖 (𝜃, 𝑒)
𝜕𝜃𝑖

= 𝑞𝑖 (𝜃, 𝑒).

Now suppose 𝑞𝑖 (𝜃, 𝑒) + 𝑒𝑖 ≥ 1. Then,
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𝑢𝑖 (𝜃, 𝑒) = min{1, 𝑞𝑖 (𝜃, 𝑒) + 𝑒𝑖}𝜃𝑖 − 𝑡𝑖 (𝜃, 𝑒) − 𝑒𝑖𝜃𝑖 = 𝜃𝑖 − 𝑡𝑖 (𝜃, 𝑒) − 𝑒𝑖𝜃𝑖 .

Notice that 𝑡𝑖 (𝜃, 𝑒) must be constant in 𝜃𝑖 on the region with 𝑞𝑖 (𝜃, 𝑒) + 𝑒𝑖 ≥ 1: Since agent 𝑖’s

effective allocation is constant, otherwise, 𝑖 would simply choose the type with the least cost. Then,

of course,

𝜕𝑢𝑖 (𝜃, 𝑒)
𝜕𝜃𝑖

= 1 − 𝑒𝑖

�

C Proof of Proposition 1

Proof. We want to show that for each 𝑖 ∈ 𝑁, for each 𝜃𝑖 , 𝜃
′
𝑖
∈ Θ𝑖 and 𝜃−𝑖 ∈ Θ𝑖, we have

𝑢𝑖 (𝜃, 𝑒) ≥ 𝜃𝑖 min{1, 𝑞𝑖 (𝜃 ′𝑖 , 𝜃−𝑖 , 𝑒) + 𝑒𝑖} − 𝑡𝑖 (𝜃 ′𝑖 , 𝜃−𝑖 , 𝑒) − 𝜃𝑖𝑒𝑖

⇐⇒ 𝑢𝑖 (𝜃, 𝑒) ≥ 𝜃𝑖 min{1, 𝑞𝑖 (𝜃 ′𝑖 , 𝜃−𝑖 , 𝑒) + 𝑒𝑖} + 𝜃 ′
𝑖
min{1, 𝑞𝑖 (𝜃 ′𝑖 , 𝜃−𝑖 , 𝑒) + 𝑒𝑖}

−𝜃 ′
𝑖
min{1, 𝑞𝑖 (𝜃 ′𝑖 , 𝜃−𝑖 , 𝑒) + 𝑒𝑖} − 𝑡𝑖 (𝜃 ′𝑖 , 𝜃−𝑖 , 𝑒) − 𝜃𝑖𝑒𝑖 + 𝜃 ′

𝑖
𝑒𝑖 − 𝜃 ′

𝑖
𝑒𝑖

⇐⇒ 𝑢𝑖 (𝜃, 𝑒) ≥ 𝜃𝑖 min{1, 𝑞𝑖 (𝜃 ′𝑖 , 𝜃−𝑖 , 𝑒) + 𝑒𝑖} − 𝜃 ′
𝑖
min{1, 𝑞𝑖 (𝜃 ′𝑖 , 𝜃−𝑖 , 𝑒) + 𝑒𝑖}

+𝑢𝑖 (𝜃 ′𝑖 , 𝜃−𝑖 , 𝑒) − 𝑒𝑖 (𝜃𝑖 − 𝜃 ′
𝑖
)

⇐⇒ 𝑢𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒) − 𝑢𝑖 (𝜃 ′𝑖 , 𝜃−𝑖 , 𝑒) ≥ (𝜃𝑖 − 𝜃 ′
𝑖
)min{1, 𝑞𝑖 (𝜃 ′𝑖 , 𝜃−𝑖 , 𝑒) + 𝑒𝑖}

−𝑒𝑖 (𝜃𝑖 − 𝜃 ′
𝑖
)

⇐⇒
∫ 𝜃𝑖

𝜃′
𝑖

𝑞∗
𝑖
(𝑥, 𝜃−𝑖 , 𝑒)𝑑𝑥 ≥

∫ 𝜃𝑖

𝜃′
𝑖

𝑞∗
𝑖
(𝜃 ′

𝑖
, 𝜃−𝑖 , 𝑒)𝑑𝑥

Suppose 𝜃𝑖 > 𝜃 ′
𝑖
. Since 𝑞∗

𝑖
(·, 𝜃−𝑖 , 𝑒) is increasing, 𝑞∗𝑖 (𝑥, 𝜃−𝑖 , 𝑒) ≥ 𝑞∗

𝑖
(𝜃 ′

𝑖
, 𝜃−𝑖 , 𝑒) for each 𝑥 ∈

[
𝜃 ′
𝑖
, 𝜃𝑖

]
.

Then, the last inequality above holds. Similar analysis holds for the case of 𝜃𝑖 < 𝜃 ′
𝑖
.

�

D Transformations of the Designer’s Problem

We start with the following problem in Equation 2.2 and make the following transformation:
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∫
Θ

∫ 𝜃𝑖

𝜃𝑖
𝑞𝑖 (𝑥, 𝜃−𝑖 , 𝑒)𝑑𝑥 𝑓 (𝜃)𝑑𝜃

=
∫
Θ−𝑖

∫
Θ𝑖

∫ 𝜃𝑖

𝑥
𝑞𝑖 (𝑥, 𝜃−𝑖 , 𝑒) 𝑓 (𝜃)𝑑𝜃𝑑𝑥

=
∫
Θ−𝑖

∫
Θ𝑖

𝑞𝑖 (𝑥, 𝜃−𝑖 , 𝑒)
∫ 𝜃𝑖

𝑥
𝑓𝑖 (𝜃𝑖)𝑑𝜃𝑖 𝑓−𝑖 (𝜃−𝑖)𝑑𝜃−𝑖𝑑𝑥

=
∫
Θ
𝑞𝑖 (𝜃𝑖 , , 𝜃−𝑖 , 𝑒)

(
(1 − 𝐹𝑖 (𝜃𝑖))

𝑓𝑖 (𝜃𝑖)

)
𝑓 (𝜃)𝑑𝜃

So, the second part of the objective function becomes:

∑𝑛
𝑖=1

∫
Θ
𝜃𝑖𝑞𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒) 𝑓 (𝜃)𝑑𝜃 −

∫
Θ
𝑞𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒)

(
(1 − 𝐹𝑖 (𝜃𝑖))

𝑓𝑖 (𝜃𝑖)

)
𝑓 (𝜃)𝑑𝜃

=
∑𝑛

𝑖=1

∫
Θ

(
𝜃𝑖𝑞𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒) − 𝑞𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒)

(1 − 𝐹𝑖 (𝜃𝑖))
𝑓𝑖 (𝜃𝑖)

)
𝑓 (𝜃)𝑑𝜃

=
∑𝑛

𝑖=1

∫
Θ
𝑞𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒)

(
𝜃𝑖 −

(1 − 𝐹𝑖 (𝜃𝑖))
𝑓𝑖 (𝜃𝑖)

)
𝑓 (𝜃)𝑑𝜃

Next we look at the first summand in the objective function above. Notice that inside is actually

a constant given 𝜃−𝑖 so it can be expressed as below:

∫
Θ

[ ∫
{𝑦 |𝑞𝑖 (𝑦, 𝜃−𝑖 ,𝑒) ≤0}

𝑞𝑖 (𝑥, 𝜃−𝑖 , 𝑒)𝑑𝑥
]
𝑓 (𝜃)𝑑𝜃

=
∫

Θ−𝑖

[ ∫
{𝑦 |𝑞𝑖 (𝑦, 𝜃−𝑖 ,𝑒) ≤0}

𝑞𝑖 (𝑥, 𝜃−𝑖 , 𝑒)𝑑𝑥
]
𝑓−𝑖 (𝜃−𝑖)𝑑𝜃−𝑖

=
∫

Θ−𝑖

[∫
Θ𝑖

𝑞𝑖 (𝑥, 𝜃−𝑖 , 𝑒)1{𝑞𝑖 (𝑥, 𝜃−𝑖 , 𝑒) ≤ 0}𝑑𝑥
]
𝑓−𝑖 (𝜃−𝑖)𝑑𝜃−𝑖

=
∫
Θ

𝑞𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒)
1{𝑞𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒) ≤ 0}

𝑓𝑖 (𝜃𝑖)
𝑓 (𝜃)𝑑𝜃

Finally, the objective function can be written as:

∑𝑛
𝑖=1

[∫
Θ

𝑞𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒)
1{𝑞𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒) ≤ 0}

𝑓𝑖 (𝜃𝑖)
𝑓 (𝜃)𝑑𝜃

]
+∑𝑛

𝑖=1

[∫
Θ

𝑞𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒)
(
𝜃𝑖 −

(1 − 𝐹𝑖 (𝜃𝑖))
𝑓𝑖 (𝜃𝑖)

)
𝑓 (𝜃)𝑑𝜃

]
=
∑𝑛

𝑖=1

[∫
Θ
𝑞𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒)

[
1{𝑞𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒) ≤ 0}

𝑓𝑖 (𝜃𝑖)
+
(
𝜃𝑖 −

(1 − 𝐹𝑖 (𝜃𝑖))
𝑓𝑖 (𝜃𝑖)

)]
𝑓 (𝜃)𝑑𝜃

]
Hence, the revenue maximization problem can be expressed as
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max
(𝑞𝑖 ,𝑡𝑖)𝑖∈𝑁

𝑛∑︁
𝑖=1

[∫
Θ

𝑞𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒)
[
1{𝑞𝑖 (𝜃𝑖 , 𝜃−𝑖 , 𝑒) ≤ 0}

𝑓𝑖 (𝜃𝑖)
+
(
𝜃𝑖 −

(1 − 𝐹𝑖 (𝜃𝑖))
𝑓𝑖 (𝜃𝑖)

)]
𝑓 (𝜃)𝑑𝜃

]
s. t.

𝑞𝑖 (𝜃, 𝑒) is increasing in 𝜃𝑖

𝑞𝑖 (𝜃, 𝑒) ≥ −𝑒𝑖

0 =
∑𝑛

𝑖=1 𝑞𝑖 (𝜃, 𝑒𝑖)
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