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Abstract

In this paper, I show that the existence of a solution to a mar-

ket design problem can be obtained as long as the designer’s and the

agents’ preferences satisfy any sufficiently well-behaved abstract con-

vexity, using ‘convex’ price orders that rank bundles instead of price

vectors. Walrasian Equilibrium is obtained as a special case.

1 Introduction

Convexity has been one of the most common assumptions in many different

lines of economic research, including showing the existence of equilibrium as

well as in studying the efficiency, stability and other properties of the equi-

libria (Mas-Colell et al. (1995); Kreps (2012)). However, Euclidean convexity

that we commonly refer to as convexity is not the only notion of betweenness.
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Even though the mathematical theory of abstract convexities has been de-

veloping for decades, economics has not benefited from these developments

until recently. Although there were earlier attempts to incorporate these

structures within economic frameworks (most notably Koshevoy (1999) and

Nehring and Puppe (2007)), Richter and Rubinstein (2015) and Richter and

Rubinstein (2017) introduced them to general equilibrium and decision the-

ory contexts.

In the first part, I show that the existence of Nash equilibrium for generalized

games can be extended to much more general convexities with appropriate

modifications of the assumptions. Building on this result, I show the exis-

tence of competitive equilibrium under certain assumptions related to the

interactions between the abstract convexity and the underlying topological

space.

One important distinction to make is that in the equilibrium definition, price

vector is replaced by a public ordering, as defined by Richter and Rubinstein

(2015). The public ordering that clears the market orders the consumption

bundles in the economy in a way that each individual maximizes her prefer-

ences when her budget is all the bundles rankled lower than her endowment.

This generalizes the standard prices since in the standard economy, costs of

consumption bundles define a public ordering such that the lower contour

set of the endowment in this order is the budget set for each agent.
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2 Abstract Convexities

2.1 Definitions and Familiar Results

We first introduce the concept of abstract convexity, then review and verify

that many of the standard results about the standard convex preferences

hold for abstract convex preferences as well with very similar proofs.1 First,

we want to define what is an abstract convexity and what it means to for

a preference to be convex in this context. Preferences are complete and

transitive binary relations in what follows unless otherwise stated.

We first give the general definition of convexity.

Definition 2.1. A family C of subsets of a set X is called a convexity on

X if

(C-1) The empty set H and the universal set X are in C;

(C-2) C is stable for intersections;

(C-3) C is stable for nested unions.

The pair pX, Cq is called a convex structure.

Notice that all three of above axioms of convexity are satisfied by the standard

convex sets. Next, we define the convex hull for a convexity in the same way

we do for the standard convexity.

Definition 2.2. Given a convex structure pX, Cq, for A Ă X, convex hull

of A is defined as:

KpAq “
č

tC|A Ă C P Cu. (1)

1Most of the material about convexities discussed in this section can be found in van de
Vel (1993b).
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Moreover, a set A is said to be convex if A P C or equivalently A “ KpAq.

Next, we define convex preferences more generally as was introduced by

Richter and Rubinstein (2017).

Definition 2.3. A preference ľ is convex w.r.t. C if for any alternative

a P X, the strict upper contour set Upľ, aq “ tx|x ą au is convex w.r.t. C.

Some simple but useful results has not been proven for these general convex-

ities. So we prove them here to be prepared for the next section. The next

definition introduces a measure of richness of the convexity by categorizing

the convexities based on their polytopes. This will be useful in the next two

lemmas.

Definition 2.4. A convex structure is of arity ď n provided its convex sets

are precisely the sets C with the property that cotF u Ă C for each subset

F with #F ď n. (We will say of arity n (rather than of arity at most n) for

ease of reading unless the distinction is important.)

Lemma 2.1. Suppose the convexity on X is of arity n. If ľ is convex, then

the set of ľ-best points in a convex set is convex.

Proof. Let A Ă X and Bpľ, Aq be the set of ľ-best points in A. Assume

that A is convex. Suppose there are n points x1, . . . , xn P Bpľ, Aq. Then,

xi „ xj for each i, j “ 1, . . . , n. Let z P Kptx1, . . . , xnuq. Since ľ is convex,

the (weak) upper contour set is a convex set: UCpľ, xq “ KpUCpľ, xqq and

by monotonicity of the convex hull operator, z P UCpľ, xq so that z ľ x.

Also, since x P Bpľ, Aq, for each t P A, we have x ľ t. Then, by transitivity,

combining z ľ x and x ľ t yields z ľ t for each t P A. Hence, z P Bpľ, Aq

and Bpľ, Aq is convex.

Definition 2.5. Suppose the convexity on X is of arity n. Let f : X Ñ

R. f is quasi-concave if, fpzq ě mintfpx1q, . . . , fpxnqu for each z in

Kptx1, . . . , xnuq.
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Lemma 2.2. Suppose the convexity on X is of arity n. Let ľ be preference

on X and a function f : X Ñ R represents it. ľ is convex, if and only if, f

is quasi-concave.

Proof. If ľ is convex, then the weak upper contour sets are convex: UCpy,ľ

q “ KpUCpy,ľqq for each y P X. Now, let x2, . . . , xn P UCpy,ľq. By mono-

tonicity of the convex hull operator, Kpy, x2, . . . , xnq Ă UCpy,ľq. Then, for

each z P Kpy, x2, . . . , xnq, z ľ y. So, upzq ě upyq “ mintupyq, upx2q, . . . , upxnqu

so that up¨q is quasi-concave.

Conversely, if up¨q is quasi-concave, take any y, x2, . . . , xn P X such that

fpx2q, . . . , fpxnq ě fpyq. Then, by quasi-concavity, fpzq ě fpyq for each

z P Kpy, x2, . . . , xnq and hence upper contour set of y is convex.

2.1.1 A Specific Class of Convexities of Economic Interest

Richter and Rubinstein (2015, 2017) suggested a way to generate a convexity

based on some primitive orderings in economic contexts:

Definition 2.6. Let X be a set of outcomes and Λ a set of (complete and

transitive) binary relations that we refer to as primitive orderings. Then,

convex hull operator of Λ-convexity on X is defined as follows: For each

A Ă X

KpAq “ tx|@ ěkP Λ, Dak P A s.t. x ěk aku. (2)

Remark 2.1. Richter and Rubinstein (2015) establishes that for every con-

vex preference with respected to a Λ-convexity, the weak upper contour sets

are also convex: WUpľ, aq “ tx|x ľ au.

Then, this gives rise to the following equivalent definition of a convex prefer-

ence for a convexity generated by primitive orderings, characterized in Propo-

sition 6 of Richter and Rubinstein (2017).
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Definition 2.7. A preference ľ is Λ-convex if for any two alternatives

a, b P X; if for each ěkP Λ, there is an alternative yk P X with yk ‰ b such

that (i) b ěk yk and (ii) yk ľ a, then b ľ a.

One motivation they provided is as follows: Suppose some professors are

evaluating job market candidates based on research, teaching and charm. To

convince them that candidate b should be chosen rather than a, you would

find for each criterion an alternative c which is inferior to b according to that

criteria but they still prefer c to a.

This approach encompasses the standard convexity as well. Let X “ Rn.

Then, the orderings induced by all linear functionals in Rn would define the

standard convexity. If we only consider the orderings induced by the strictly

positive linear functionals, then this corresponds to a convexity such that if

a preference is convex with respect to it, then it is strictly increasing.

2.2 Existence of a Nash Equilibrium

We are going to prove the existence of a competitive equilibrium by con-

structing a generalized game where a player’s actions affect the other player’s

feasible actions. In this section, we prove the existence of a Nash equilibrium

in a generalized game where the players have convex preferences and convex

strategy spaces.

We present a generalization of Kakutani’s fixed point theorem that replaces

the standard convexity with an abstract one. Before stating the theorem, we

give definitions of several concepts needed for this theorem:

• A Topological Convex Structure (tcs) is a set X with a convexity C and

a topology T such that all polytopes of C are closed in T .

• In a convexity, a half-space is a convex set whose complement is also

convex.
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• A tcs X is S4 if for each pair of disjoint and non-empty convex sets

C,D, there exists a half-space H Ă X with C Ă H and D Ă XzH.

• A tcs X is closure stable if closure of each set is also convex.

• a tcs X is properly locally convex if each x P X, has a neighborhood

base of convex open sets. (I.e., a family of open and convex sets tNαu

such that every neighborhood N of x includes some member Nα of this

family: Nα Ă N .)

• A tcs X is FS4 if for each pair of disjoint and non-empty convex closed

sets C,D, there exists a continuous CP functional of X separating C

and D.

Lemma 2.3 (Theorem 6.15 of Chapter 4.6, van de Vel (1993b)). Let X be

a compact Hausdorff tcs with connected convex sets. Let F : X ñ X be

a nonempty-, convex-, closed-valued upper hemi-continuous correspondence.

If either X is properly locally convex, closure stable and S4 or X is FS4,

then F has a fixed point.

Remark 2.2. To be able to use Berge’s theorem, we need a metric space

anyway and metric spaces are Hausdorff topological spaces. In what follows,

we restrict ourselves to compact, properly locally convex, closure stable and

S4 metric spaces with connected convex sets. We could have considered FS4

spaces as well but we do not take that route and focus on generalizations of

Euclidean spaces here for now.

We will need the following lemma when we construct the “joint best re-

sponses” correspondence and apply Lemma 2.3.

Lemma 2.4. Consider some tcs tX1, . . . , Xnu. If each Xi is a compact,

properly locally convex, closure stable and S4 metric space with connected

convex sets, the their product tcs X “ Πn
i“1 is also a compact, properly
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locally convex, closure stable and S4 metric space with connected convex

sets.

Proof. Consider the product tcs of some tcs tX1, . . . , Xnu which are compact,

properly locally convex, closure stable and S4 metric spaces with connected

convex sets. It is a standard result from topology that compactness and

connectedness is preserved under products. Closure stability follows from

theorem 1.10 of chapter 3.1 in van de Vel (1993b). The product is S4 by

theorem 3.15 of chapter 1.3 in van de Vel (1993b). Finally, it is properly

locally convex which can be seen by taking the product of neighborhood

base in each dimension.

We record the version of Berge’s Theorem (or Theorem of Maximum) we will

be using next.

Lemma 2.5. Let X and Y be metric spaces and f : X ˆ Y ñ R be a

continuous function. Suppose that F : X ñ Y is a correspondence that

is upper and lower hemi-continuous, and compact- and nonempty-valued.

Then, the optimal choice correspondence Z : X ñ Y defined by Zpxq “

arg maxyPF pxq fpx, yq is upper hemi-continuous and the maximum value func-

tion m : X ñ R is continuous.

Finally, we give formal definitions of a generalized game and a Nash equilib-

rium for such a game.

Definition 2.8. An n-player generalized game G “ ptAi, Ci, uiu
n
i“1q consists

of, for each i “ 1, . . . , n,

(i) A set of actions Ai;

(ii) A constraint (feasibility) correspondence Ci : A´i ñ Ai (where A´i “

ΠjPt1,...,nuztiuAj);
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(iii) A utility function ui : Πn
j“1Aj ñ R.

Definition 2.9. A Nash equilibrium for a generalized game G “ ptAi, Ci, uiu
n
i“1q

is a strategy profile pa˚i q
n
i“1 P Πn

i“1Ai such that, for each i “ 1, . . . , n,

(i) a˚i P Cipa
˚
´iq;

(ii) a˚i maximizes upai, a˚´iq over ai P Cipa
˚
´iq.

Now, we can prove the existence of Nash equilibrium in a generalized game.

Theorem 2.1. Suppose that G “ ptAi, Ci, uiu
n
i“1q is a generalized game for

which

(i) Each Ai be a compact, properly locally convex, closure stable and S4

metric space with connected convex sets;

(ii) Each Ci is a continuous, non-empty-, closed- and convex-valued corre-

spondence;

(iii) Each ui is jointly continuous in a P A “ Πn
j“1Aj and represents a convex

preference ľi.

Then, G has a Nash equilibrium.

Proof. Consider the problem of maximizing the real-valued uipai, a´iq with

respect to ai P Cipa´iq for each a´i P A´i and for each i P N . Then, applying

Berge’s theorem directly thanks to assumptions made above, we see that the

best response correspondences A˚i : A´i ñ Ai are non-empty- and compact-

valued, and upper hemi-continuous.

Take any x P R. Since we assumed that ui represents a convex preference, its

argmax on a convex set is convex by lemma 2.1. Hence, A˚ is convex-valued

for each player.
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Define the joint best response correspondence A˚ : A ñ A as follows: At

each a P A, we have b P A˚paq if for each i P N , bi P A
˚pb´iq. It inherits the

properties of individual best responses by lemma 2.4 and hence it is a non-

empty-, convex-, closed-valued and upper hemi-continuous correspondence in

a compact, properly locally convex, closure stable and S4 metric space with

connected convex sets. Hence, by Kakutani’s theorem 2.3, G has a fixed

point and by construction, the fixed point is a Nash equilibrium.

Corollary 2.1. Suppose that G “ ptAi, Ci, uiu
n
i“1q is a generalized game for

which

(i) Each Ai be a compact, properly locally convex, closure stable and S4

metric space with connected convex sets;

(ii) Best Response of each individual, A˚i pa´iq is an upper hemi-continuous,

non-empty-, closed- and convex-valued correspondence.

Then, G has a Nash equilibrium.

Proof. The proof is same as the last step of the previous proposition: Define

the joint best response correspondence A˚ : A ñ A as follows: At each

a P A, we have b P A˚paq if for each i P N , bi P A˚pb´iq. It inherits the

properties of individual best responses by lemma 2.4 and hence it is a non-

empty-, convex-, closed-valued and upper hemi-continuous correspondence in

a compact, properly locally convex, closure stable and S4 metric space with

connected convex sets. Hence, by Kakutani’s theorem 2.3, G has a fixed

point and by construction, the fixed point is a Nash equilibrium.
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2.3 Topology and Convexity of Space of Public Order-

ings

As it is common in the general equilibrium theory (see for example Kreps

(2012)), our existence result will employ an auctioneer who chooses a ‘price’

to clear the markets. However, unlike the standard framework where the

set of strategies of the auctioneer can be reduced to the unit simplex of

relevant dimension, it is a complicated object in this setting: The auctioneer

chooses a public ordering. Notice that this is a generalization of the standard

economy with prices. For example, with linear prices, possible price vectors

are non-negative linear functionals, which are among primitive orderings of

the standard economy. Moreover, linear prices also define an ordering on the

set of allocations in the natural way: If p ¨ x ě p ¨ y then x ľp y.

Showing that the set of strategies of the auctioneer is well-behaved enough

to be used in Theorem 2.1 requires quite a lot of work and involves defining

a convexity and topology on public orderings that are consistent with the

individual’s consumption spaces’ convexities and topologies, then verifying

that this convexity and topology inherits topological and convexity related

properties of each individual’s consumption space. Therefore, we reserve this

for the appendix and summarize the results here.

Assumption 2.1. We assume that for an economy E , the consumption sets

of individuals are same: Xi “ Xj for each i, j “ 1, . . . , n.

This assumption ensures that we have a clear interpretation of the public

ordering. If we don’t make this assumption, the public ordering would be

comparing the consumption bundles in spaces distinct from each other. Then,

there would be situations in which an agent can afford a bundle according

to the public ordering but this bundle is not even in his consumption space.

We can deal with this mathematically but it would make little sense to do it

that way.
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An alternative, which is mathematically feasible is to define the public order-

ing as the union of public orderings of each individual’s consumption space.

I.e., P Ă Yni“1Xi ˆXi. Everything we are doing here can be done with this

with appropriate adjustments but it would still be more difficult to interpret

such an equilibrium with such a public ordering.

It is worth noting that we do not assume the consumption spaces of individ-

uals to be endowed with the same convexity or topology. Even though the

sets Xi are the same, we keep using the subscript to distinguish them from

their product and to emphasize the individual convexities and topologies.

The following lemma which has been proven in the appendix shows that the

set of public orderings of an auctioneer satisfies the assumptions of 2.1.

Lemma 2.6. Let Xi be a compact, properly locally convex, closure stable

and S4 metric space with connected convex sets. Then, the space of closed

subsets of X2
i can be endowed with the Hausdorff metric, Vietoris topology

and Vietoris convexity. Moreover, this tcs is also a compact, properly locally

convex, closure stable and S4 metric space with connected convex sets.

2.4 Feasible Trades and Admissible Public Orderings

We haven’t yet specified the set of feasible trades. We do it implicitly by

introducing a set of feasible allocations F Ă X “ Πn
i“1Xi, given a profile of

initial endowments. (Since the endowments will be fixed, we do not explicitly

show the dependence of the set to the endowments in our notation.) We

denote the set of admissible public orderings for an economy by P as defined

in Appendix B.

We revise the definition of Walrasian equilibrium accordingly.

Definition 2.10. A Walrasian equilibrium for an economy E “ xN, pXi,ľi, e
iqni“1,Fy

is a public ordering p P P and an allocation profile x P X such that
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(i) For each consumer i, xi solves the problem: maximize uipy
iq subject to

yi P Xi and ei ěp y
i;

(ii) Markets clear: x P F .

Assumption 2.2. Given an economy E “ xN, pXi,ľi, e
iqni“1,Fy, there exists

a preference ľA on X ˆ P such that

(i) It is represented by a continuous function uApx, pq that is quasi-concave

in p;

(ii) If x P X with x R F and q P arg maxpPP upx, pq, then there exists i P N

such that xi ąq e
i.

This assumption ensures that there is a well-behaved preference on the set

of allocation and public ordering bundles such that, if some allocation is not

feasible from some profile of initial endowments, then any public ordering

that maximize this preference given this allocation has the property that

there is at least one individual who cannot afford his allocation under this

ordering.

Even though this higher order assumption looks obscure, considering the

fact that the set of feasible allocation profiles is entirely arbitrary in this

model, this is a necessary restriction. In the standard setting, the Walrasian

auctioneer’s preferences are continuous and quasi-concave in prices and the

second part of the assumption is also satisfied thanks to linearity of the prices.

Thus, this assumption is simply a generalization of what is implied by the

linear price structure in the standard case.

In proving the existence of a Walrasian equilibrium under standard convexity,

we consider an artificial auctioneer whose utility function is the value of the

excess demand. In that case, it is of course possible for the auctioneer to

find a price vector that would make some individual violate his budget, if the
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allocation profile is infeasible.2 This assumption is an abstract counterpart

to it. Thus, it serves a similar purpose and it will help us show the market

clearance.

2.5 Existence of Competitive Equilibrium

The following lemma shows the continuity of the budget sets in public order-

ings and it has been proved in the appendix Appendix A.1.

Lemma 2.7. Consider an economy E “ xN, pXi,ľi, e
iqni“1,Fy where Xi is

a compact, properly locally convex, closure stable and S4 metric space with

connected convex sets and it is identical for each individual.3 Let p be a

continuous public ordering. Then, Bippq “ tx P Xi|e
i ěp xu is continuous.

Now, we give an abstract version of previous Walrasian equilibrium existence

theorem.

Proposition 2.1. Consider an economy E “ xN, pXi,ľi, e
iqni“1,Fy. Assume:

(i) For each i, j P N , Xi “ Xj and Xi is a compact, properly locally convex,

closure stable and S4 metric space with connected convex sets.

(ii) ľi is continuous and convex. (We take ui to represent ľi for each

individual i in N .)

(iii) There exists a utility function uA on X ˆ P such that it is continuous

in both arguments and quasi-concave in p P P ; and if x P X with

x R F and if q maximizes ľA given x, then there exists i P N such that

xi ąq e
i.

2Indeed, the last step of the standard proof of existence of competitive equilibrium
would also show this, using its contrapositive Kreps (2012).

3Notice that we require the set of possible allocations Xi to be identical for each agent
but we do not require the associated topologies and convexities to be the same. Moreover,
we do not rule out the possibility that some bundles are not available for some agents, it
is implicitly embedded in the definition of feasible allocation profiles, F .
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Then, E has a Walrasian equilibrium.

Proof. Consider the following generalized game.

• The players are the individuals in N and an auctioneer.

• The strategy space P of the auctioneer is a non-empty convex compact

subset of cpX2
i q such that each p P P is a continuous, concave4 and

reflexive ordering on Xi.

• Each individual i’s strategies are constrained by choice of the auction-

eer: He must choose xi from the set tx P Xi|e
i ěp xu where ěp is the

public ordering that the auctioneer chose. When i chooses x, his utility

is uipxq.

• We endow the auctioneer with the preference ľA.

Each individual’s strategy space has been assumed to be a non-empty tcs

such that it is a compact, properly locally convex, closure stable and S4

metric space with connected convex sets, so the first condition of the previous

proposition holds for them.

The auctioneer’s strategy space is also given similarly as shown by lemma

2.6.

The auctioneer’s feasibility correspondence is constant (hence continuous)

and is equal to a compact, convex, non-empty set everywhere and hence it

satisfies the second condition of the previous proposition.

The continuity and convexity of preferences of individuals is assumed.

The continuity of preferences of the auctioneer is also assumed.

Now, the feasibility correspondences of the individuals (as well as the auc-

tioneer) are clearly convex (by concavity of the public ordering), compact

4By a concave ordering, I mean one whose lower contour sets are convex.
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(by continuity of the public ordering and the fact that Xi is compact) and

nonempty (by reflexivity of the public ordering) everywhere. The trouble is

continuity and it has been shown in the Appendix A.1.

Then, Theorem 2.1 applies and there is a Nash equilibrium pp, pxiqq of this

generalized game. We want to show that this is a Walrasian equilibrium of

this economy. Utility maximization is obvious by construction. We need to

verify that markets clear.

Now, suppose x R F . Then, we know that the best response of the auctioneer

would require him to choose a public ordering such that at least one indi-

vidual i cannot afford xi given his endowment ei under this public ordering.

So, there cannot be a Nash equilibrium in which x R F . Hence, the Nash

equilibrium must be a Walrasian equilibrium of this economy.
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Appendix A Continuity of Budget Sets

Consider an economy E “ xN, pXi,ľi, e
iqni“1,Fy where Xi is a compact,

properly locally convex, closure stable and S4 metric space with connected

convex sets; and consumption spaces are identical for individuals.

We define the budget sets Bippq “ tx P Xi|e
i ěp xu. In this section, we want

to show the continuity of these sets in the public ordering, p. We first give

the relevant definitions and results that we are going to use.

A closed-valued correspondence (between metric spaces A,B) F : Añ B is

upper hemi-continuous, if at each a P A, for each an P A8 that converges

to a and for each bn P B8 with bn P F panq, @n “ 1, . . . that converges to b,

b P F paq.

A correspondence (between metric spaces A,B) F : A ñ B is lower hemi-

continuous, if at each a P A, for each an P A8 that converges to a and for

each b P F paq, there exists a subsequence ank
and a sequence bk P B8 that

converges to b with bk P F pank
q, for each k.

A correspondence is continuous if it is both upper hemi-continuous and lower

hemi-continuous.

Now, we define the (Kuratowski) convergence of a sequence of sets. Let Z

be a topological space. Let tZnu be a sequence of subsets of Z.

lim supZn is the set of elements z such that there is a sequence of elements

zk and a subsequence tZnk
u such that zk P Znk

and zk converges to z.

lim inf Zn is the set of elements z such that there is a sequence of elements

zn with zk P Zn and zn converges to z.

Z 1 “ limZn if lim inf Zn “ Zn lim supZn. If this is the case, Zn converges to

Z 1 in Kuratowski sense.

Consider pcpX2
i q, TV q. This is a compact Hausdorff space, since it is a com-
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pact metric space, with the Hausdorff metric. Then, by Theorem 4.7 in Il-

lanes and Nadler (1999), convergence in Kuratowski sense and Convergence

in TV are equivalent on cpX2
i q. Now, we can prove the following lemma.

Lemma Appendix A.1. Consider an economy E “ xN, pXi,ľi, e
iqni“1,Fy

where Xi is a compact, properly locally convex, closure stable and S4 metric

space with connected convex sets and identical for each individual. Let p be

a continuous public ordering. Then, Bippq “ tx P Xi|e
i ěp xu is continuous.

Proof. Upper hemi-continuity: Suppose tpmu is a sequence of public order-

ings in P approaching p and xim is feasible at pm for each m and limm xim “ xi.

By feasibility, xim P Xi for each m, so by compactness, xi P Xi. Again, by

feasibility, ei ěpm xim. Now, it is known that in compact metric spaces, Ku-

ratowski convergence and convergence in Hausdorff metric coincide. Then,

since tpmu converges to p, (the inner limit) lim inf pm is equal to p as a set,

since p is the limit and hence is equal to inner and outer limit by definition.

Now, since ei ěpm xim, we have pxim, e
iq P p with pxi, eiq being its limit. Then,

pxi, eiq is in the lim inf pm and hence in p. Hence, ei ěp xi, yielding upper

hemi-continuity.

Lower hemi-continuity: Let pm be a sequence of public orderings that con-

verges to some public ordering p and let xi be a feasible allocation for in-

dividual i with the endowment ei under p. (So, ei ěp xi or equivalently,

pxi, eiq P p.) We want to show that there is a subsequence pmk
of pm and

a sequence of allocations xik such that it converges to xi and for each k,

ei ěpk xik. Now, using the fact that pxi, eiq P p where p is the limit of pm

and hence is equal to the outer limit, by definition of the outer limit, we

have a sequence of points pxikq and a subsequence of sets pmk
of pm such that

pxik, eq P Pmk
with pxik, e

iq converging to pxi, eiq. The subsequence of public

orderings pmk
and the sequence of allocations xik with the stated qualities

was precisely what we needed for lower hemi-continuity.
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Appendix B Space of Public Orderings

Assume throughout this section that Xi is a compact, properly locally convex,

closure stable and S4 metric space with connected convex sets.

Notation: X “ Πn
i“1Xi and X2

i “ XiˆXi. We call xi P Xi an allocation and

x P X an allocation profile.

Given the metrics on the individual’s consumption spaces, Xi, we endow X2
i

with the Manhattan metric: Let di be the metric on Xi. Then, we define:

dpx, yq “
n

ÿ

i“1

dipxi, yiq, @x, y P X
2
i . (3)

Let cpX2
i q be the set of (nonempty) compact subsets of X2

i . We define the

Hausdorff metric on cpX2
i q as follows:

dHpA,Bq “ maxtmax
zPA

min
tPB
tdpz, tqu,max

zPB
min
tPA
tdpz, tquu, @A,B P cpX2

i q. (4)

It is routine to check that both of these metrics are well-defined and indeed,

metrics on their respective spaces.

Let pY, T q be an arbitrary topological space and let clpY q be the set of

(nonempty) closed sets in Y . Then, the Vietoris topology on clpY q is the

smallest topology TV such that

(i) If U P T , then tA P CLpY q|A Ă Uu P TV .

(ii) If B is T -closed, then tA P clpY q|A Ă Bu is TV -closed.

Let the topology generated by dH be denoted by TH . Also, notice that

clpX2
i q “ cpX2

i q since closed subsets of a compact space is compact. Now, by
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theorem 3.1 in Illanes and Nadler (1999), TV “ TH . Moreover, by theorem

3.5 there, pcpX2
i q, TV q is compact.

Next, we define a convexity on cpX2
i q. To do this, we first take the product

convexity on Xi as the convexity on X2
i . We need a couple of definitions.

Let C be a collection of subset of a set Z. We say that pZ, Cq is a closure struc-

ture, if (i) C includes the empty set and Z, (ii) C is closed under (arbitrary)

intersections.

We say that a collection S of subset of a set Z is a subbase for a convex

structure pZ, Cq, if S Ă C and C is the coarsest convexity that includes S.

Let Z be a set and A1, . . . , An Ă Z. Define xA1, . . . , Any “ tB Ă 2Z |B Ă

Yni“1Ai; @i “ 1, . . . , n, B X Ai ‰ Hu.

Let pZ,Dq be a closure structure; D˚ ” DztHu. Then, the sets xDy X D˚
and xD,Zy XD˚ for D P D generate the Vietoris Convexity on the set D˚.

Let H˚ be the set of all (nonempty) closed, convex subset of X2
i . Then, by

definition, it defines a Vietoris convexity on X2
i , CV .

We can indeed do this as by Proposition 3.10.4 of Chapter 3.3 in van de Vel

(1993b), Vietoris metric and Vietoris convexity are compatible.5

By 3.7 in van de Vel (1993a), this space is S4 and has connected convex sets,

inheriting the properties of X2
i , which inherits properties of Xi. Theorem

2.6 in van de Vel (1993a) implies that this space is properly locally convex

and Theorem 2.4 there implies that it is closure stable. Hence, the space

of (nonempty) closed subsets of X2
i is a compact, properly locally convex,

closure stable and S4 metric space with connected convex sets. We summarize

these results in the following lemma for future reference.

Lemma Appendix B.1. Let Xi be a compact, properly locally convex,

closure stable and S4 metric space with connected convex sets. Then, the

5This follows since when the space is compact, the convex closure of union of two
compact convex set is also compact, as argued by van de Vel (1984) (Remark 1.7).
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space of closed subsets of X2
i can be endowed with the Hausdorff metric,

Vietoris topology and Vietoris convexity. Moreover, this tcs is also a compact,

properly locally convex, closure stable and S4 metric space with connected

convex sets.
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